Расчет мощности теплового насоса для дома: принцип действия оборудования и конкретные примеры вычислений

Содержание
  1. Расчет теплового насоса
  2. Расчет горизонтального коллектора теплового насоса
  3. Пример расчета Теплового Насоса
  4. Расчет зонда
  5. Выбор оборудования
  6. Как сделать расчет теплового насоса для отопления дома – Жми!
  7. Как работает теплонасос
  8. Основные разновидности
  9. Кпд и сор
  10. Формула для подсчета
  11. Расчет на примере системы вода-вода
  12. Расчет теплового насоса воздух-вода на отопление и ГВС просто и быстро
  13. Особенности работы ТН воздух-вода на отопление
  14. В чем разница расчетов на отопление и гвс?
  15. Расчет теплового насоса воздух-вода на ГВС
  16. Расчет теплового насоса воздух-вода для отопления
  17. Общий расчет и нюансы
  18. Как подобрать тепловой насос воздух-вода?
  19. Защититесь от форс-мажора
  20. Тепловой насос для отопления дома: принцип работы и примеры расчета
  21. Тепловой насос. Конструкция обогрева дома
  22. Принцип работы тепловых насосов
  23. Виды конструкций тепловых насосов
  24. Работа теплового насоса при работе по схеме «грунт-вода»
  25. Горизонтальный вариант
  26. Вертикальный вариант
  27. Комбинированный вариант
  28. Пример расчета теплового насоса
  29. Расчет коллектора
  30. Расчет вертикального коллектора
  31. Виды тепловых насосов для отопления дома
  32. Настало время предметно изучать зарубежный опыт
  33. Методика расчета тепловых насосов

Расчет теплового насоса

Расчет мощности теплового насоса для дома: принцип действия оборудования и конкретные примеры вычислений

Как известно, тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов.

На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3–7.

Говоря более точно, источниками низкопотенциального тепла могут быть наружный воздух температурой от –15 до +15°С, отводимый из помещения воздух (15–25°С), подпочвенные (4–10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0–10°С), поверхностный (0–10°С) и глубинный (более 20 м) грунт (10°С).

Если в качестве источника тепла выбран атмосферный или вентиляционный воздух, применяются тепловые насосы, работающие по схеме «воздух–вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

При использовании в качестве источника тепла грунтовой воды она подается из скважины с помощью насоса в теплообменник насоса, работающего по схеме «вода–вода», и либо закачивается в другую скважину, либо сбрасывается в водоем. Если источник – водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы.

По трубопроводу циркулирует раствор гликоля (антифриз), который через теплообменник теплового насоса передает тепло фреону.

Возможны два варианта получения низкопотенциального тепла из грунта: укладка металлопластиковых труб в траншеи глубиной 1,2–1,5 м либо в вертикальные скважины глубиной 20–100 м. Иногда трубы укладывают в виде спиралей в траншеи глубиной 2–4 м. Это значительно уменьшает общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет 50–70 кВт•ч/м2 в год. По данным зарубежных компаний, срок службы траншей и скважин составляет более 100 лет.

Расчет горизонтального коллектора теплового насоса

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт/м. Более точно: сухой песок – 10, сухая глина – 20, влажная глина – 25, глина с большим содержанием воды – 35 Вт/м.

Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах принимают обычно равной 3 °С. На участке над коллектором не следует возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть 0,7–0,8 м. Длина одной траншеи составляет обычно от 30 до 120 м.

В качестве теплоносителя первичного контура рекомендуется использовать 25-процентный раствор гликоля. В расчетах следует учесть, что его теплоемкость при температуре 0 °С составляет 3,7 кДж/(кг•К), плотность – 1,05 г/см3. При использовании антифриза потери давления в трубах в 1,5 раза больше, чем при циркуляции воды.

Для расчета параметров первичного контура теплонасосной установки потребуется определить расход антифриза:

Vs = Qo•3600 / (1,05•3,7•.t), где .t – разность температур между подающей и возвратной линиями, которую часто принимают равной 3 К, а Qo – тепловая мощность, получаемая от низкопотенциального источника (грунт). Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев фреона P: Qo = Qwp – P, кВт. Суммарная длина труб коллектора L и общая площадь участка под него A рассчитываются по формулам: L = Qo/q, A = L•da.

Здесь q – удельный (с 1 м трубы) теплосъем; da – расстояние между трубами (шаг укладки).

Пример расчета Теплового Насоса

Исходные условия: теплопотребность коттеджа площадью 120–240 м2 (в зависимости от теплоизоляции) – 12 кВт; температура воды в системе отопления должна быть 35 °С; минимальная температура теплоносителя – 0 °С.

Для обогрева здания выбран тепловой насос WPS 140 l (Buderus) мощностью 14,5 кВт (ближайший больший типоразмер), затрачивающий на нагрев фреона 3,22 кВт. Теплосъем с поверхностного слоя грунта (сухая глина) q равняется 20 Вт/м.

В соответствии с показанными выше формулами рассчитываем:

  1. требуемую тепловую мощность коллектора Qo = 14,5 – 3,22 = 11,28 кВт;
  2. суммарную длину труб L = Qo/q = 11,28/0,020 = 564 м. Для организации такого коллектора потребуется 6 контуров длиной по 100м;
  3. при шаге укладки 0,75 м необходимая площадь участка А = 600 Ч 0,75 = 450 м2;
  4. общий расход гликолевого раствора Vs = 11,28•3600/ (1,05•3,7•3) = 3,51 м3/ч, расход на один контур равен 0,58 м3/ч.

Для устройства коллектора выбираем металлопластиковую трубу типоразмера 32Ч3 (например, Henco). Потери давления в ней составят 45 Па/м; сопротивление одного контура – примерно 7 кПа; скорость потока теплоносителя – 0,3 м/с.

Расчет зонда

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные металлопластиковые или пластиковые (при диаметрах выше 32 мм) трубы.

Как правило, в одну скважину вставляется две петли, после чего она заливается цементным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м.

Можно также ориентироваться на следующие данные по теплосъему:

  • сухие осадочные породы – 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;
  • каменные породы с высокой теплопроводностью – 70 Вт/м;
  • подземные воды – 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +10 °С. Расстояние между скважинами должно быть больше 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку. Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя.

Расчет расхода жидкости может проводиться для .t = 5 °С. Пример расчета: Исходные данные – те же, что в приведенном выше расчете горизонтального коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,28 кВт длина зонда L должна составить 225 м. Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м.

В каждой из них размещаем по две петли из металлопластиковой трубы типоразмера 26Ч3; всего – 6 контуров по 150 м.

Общий расход теплоносителя при .t = 5 °С составит 2,1 м3/ч; расход через один контур – 0,35 м3/ч.

Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе – 96 Па/м (теплоноситель – 25-процентный раствора гликоля); сопротивление контура – 14,4 кПа; скорость потока – 0,3 м/с.

Выбор оборудования

Поскольку температура антифриза может изменяться (от –5 до +20 °С) в первичном контуре тепло насосной установки необходим расширительный бак. Рекомендуется также установить на возвратной линии накопительный бак: компрессор теплового насоса работает в режиме «включено-выключено».

Слишком частые пуски могут привести к ускоренному износу его деталей. Бак полезен и как аккумулятор энергии – на случай отключения электроэнергии. Его минимальный объем принимается из расчета 10–20 л на 1 кВт мощности теплового насоса.

При использовании второго источника энергии (электрического, газового, жидко- или твердотопливного котла) он подключается к схеме через смесительный клапан, привод которого управляется тепловым насосом или общей системой автоматики.

В случае возможных отключений электроэнергии нужно увеличить мощность устанавливаемого теплового насоса на коэффициент, рассчитываемый по формуле: f = 24/(24 – tоткл), где tоткл – продолжительность перерыва в электроснабжении.

В случае возможного отключения электроэнергии на 4ч этот коэффициент будет равен 1,2. Мощность теплового насоса можно подбирать исходя из моновалентного или бивалентного режима его работы. В первом случае предполагается, что тепловой насос используется как единственный генератор тепловой энергии. Следует принимать во внимание: даже в нашей стране продолжительность периодов с низкой температурой воздуха составляет небольшую часть отопительного сезона. Например, для Центрального региона России время, когда температура опускается ниже –10 °С, составляет всего 900 ч (38 сут), в то время, как продолжительность самого сезона – 5112 ч, а средняя температура января составляет примерно –10 °С. Поэтому наиболее целесообразной является работа теплового насоса в бивалентном режиме, предусматривающая включение дополнительного теплогенератора в периоды, когда температура воздуха опускается ниже определенной: –5 °С – в южных регионах России, –10 °С – в центральных. Это позволяет снизить стоимость теплового насоса и, особенно, работ по монтажу первичного контура (прокладка траншей, бурение скважин и т.п.), которая сильно увеличивается при возрастании мощности установки. В условиях Центрального региона России для примерной оценки при подборе теплового насоса, работающего в бивалентном режиме, можно ориентироваться на соотношение 70/30: 70 % потребности в тепле покрываются тепловым насосом, а оставшиеся 30 – электрическим котлом или другим теплогенератором. В южных регионах можно руководствоваться соотношением мощности теплового насоса и дополнительного генератора тепла, часто используемым в Западной Европе: 50 на 50.

Для коттеджа площадью 200 м2 на 4 человек при тепловых потерях 70 Вт/м2 (при расчете на –28 °С наружной температуры воздуха) потребность в тепле будет 14 кВт. К этой величине следует добавить 700 Вт на приготовление санитарной горячей воды. В результате необходимая мощность теплового насоса составит 14,7 кВт.

При возможности временного отключения электричества нужно увеличить это число на соответствующий коэффициент. Допустим, время ежедневного отключения – 4 ч, тогда мощность теплового насоса должна быть 17,6 кВт (повышающий коэффициент – 1,2). В случае моновалентного режима можно выбрать тепловой насос типа «грунт–вода» Logafix WPS 160 L (Buderus) мощностью 17,1 кВт, потребляющий 5,5 кВт электроэнергии. Для бивалентной системы с дополнительным электрическим нагревателем и температурой установки –10 °С, с учетом необходимости получения горячей воды и коэффициента запаса, мощность теплового насоса должна быть 11,4 Вт, а электрического котла – 6,2 кВт (в сумме – 17,6). Потребляемая системой пиковая электрическая мощность составит 9,7 кВт. Примерная стоимость потребляемого за сезон электричества, при работе теплового насоса в моновалентном режиме составит 500 руб., а в бивалентном – 12 500. Стоимость энергоносителя при использовании только соответствующего котла составит: электричества – 42 000, дизельного топлива – 25 000, а газа – около 8000 руб. (при существующих в России низких ценах на газ). В настоящее время для наших условий по экономичности работы тепловой насос уступает только газовым котлам, а по эксплуатационным затратам, долговечности, безопасности и экологической чистоте превосходит все другие генераторы тепловой энергии.

Отметим, что при установке тепловых насосов в первую очередь следует позаботиться об утеплении здания и установке стеклопакетов с низкой теплопроводностью.

По любым вопросам связанным с приобретением тепловых насосов в Москве и других регионах РФ звоните по телефону +7 (495) 597-82-18 или оставьте электронную заявку – мы всегда будем рады Вам помочь!

Дополнительные материалы:

Что такое тепловой насос и принцип его действия

Отопление тепловыми насосами: плюсы и минусы

Приблизительная смета на расчет отопления тепловым насосом

Тепловые насосы Viesmann и их технические характеристики

Примеры готовых проектов

Как сделать расчет теплового насоса для отопления дома – Жми!

Расчет мощности теплового насоса для дома: принцип действия оборудования и конкретные примеры вычислений

Все чаще мы задумываемся об альтернативных методах получения энергии. Наша планета не бездонная и количество ресурсов с каждым годом становится все меньше.

Вдобавок к этому, цены на энергоресурсы растут, а у нас совершенно нет уверенности в компаниях, поставляющих газ, тепло или свет.

Поэтому рано или поздно каждый задумывается над запасным вариантом, который полностью или частично защитит его от неприятных сюрпризов.

В этой статье мы рассмотрим один из альтернативных видов обогрева — тепловой насос для отопления дома. Это оборудование, которое преобразует бесплатные источники энергии природы в необходимые нам киловатты тепла.

Как работает теплонасос

Современный теплонасос очень похож на банальный холодильник

Что же такое геотермальный насос или, другими словами, теплонасос? Это оборудование, способное перенести тепло от источника к потребителю. Рассмотрим принцип его действия на примере первой практической реализации идеи.

Принцип работы геотермальных насосов стал известен еще в 50-х годах XIX века. На практике эти принципы реализовали только в середине прошлого века.

Однажды, экспериментатор по фамилии Вебер, разбирался с морозилкой и случайно прикоснулся к обжигающей трубе конденсатора. Ему пришла в голову идея, почему тепло уходит в никуда и не приносит никакой пользы? Недолго думая, он удлинил трубу и уложил ее в бак для подогрева воды.

Горячей воды, получившейся в результате этого, стало столько, что он не знал куда ее девать. Нужно было идти дальше — как обогреть с помощью этой нехитрой системы воздух? Решение оказалось очень простым и от этого не менее гениальным.

Горячая вода прогоняется по спирали через змеевик, а затем вентилятором теплый воздух раздувается по дому. Все гениальное — просто! Вебер был человеком размеренным, и со временем ему пришла мысль, как обойтись без морозильной камеры. Надо извлекать тепло из земли!

Закопав трубы из меди и накачав их фреоном (тот же газ, который используется в холодильниках) он стал получать тепловую энергию уже из недр. Думаем, что на таком примере каждый поймет принцип работы теплового насоса.

Также предлагаем вам прочитать о чудо печи на солярке в следующей статье: //6sotok-dom.com/dom/otoplenie/chudo-pech-na-solyarke.html

Основные разновидности

Системы отбора тепла. (Для увеличения нажмите)

  • воздух-воздух — это, по сути своей, обычный кондиционер;
  • воздух-вода — добавляем к кондиционеру теплообменник и мы уже греем воду;
  • земля-вода — закапываем коллектор из труб в землю, а на выходе подогреваем воду;
  • вода-вода — трубы размещаются в открытом или подземном водоеме и отдают тепло системе обогрева здания.

(С подробной классификацией тепловых насосов для отопления Вы можете ознакомиться в этой статье).

Кпд и сор

Здесь наглядно показано что ¾ части энергии мы получаем из бесплатных источников. (Для увеличения нажмите)

Для начала определимся в терминах:

  • КПД — коэффициент полезного действия, т.е. сколько полезной энергии получается в процентном соотношении от энергии, затраченной на действие системы;
  • СОР — коэффициент эффективности трансформации (англ. — coefficient of performance).

Как сделать пеллетный котел своими руками, читайте в этой статье: //6sotok-dom.com/dom/otoplenie/pelletnyj-kotel-svoimi-rukami.html

Такой показатель, как КПД, часто используют в рекламных целях: «КПД нашего насоса 500%!». Вроде и правду говорят — на 1 кВт потраченной энергии (для полноценной работы всех систем и агрегатов) произвели 5 кВт тепловой энергии.

Однако помните, что КПД не бывает выше 100% (этот показатель рассчитывается для замкнутых систем), поэтому логичнее будет использовать показатель COP (применяется для расчетов открытых систем), который показывает коэффициент преобразования использованной энергии в полезную.

Обычно COP измеряется в цифрах от 1 до 7. Чем выше цифра тем более эффективный теплонасос. В примере, приведенном выше (с КПД 500%), COP равняется 5.

Формула для подсчета

Пути потери тепла в доме

Тепловой насос способен полностью справиться с отоплением помещений.

Чтобы выбрать подходящий вам агрегат, следует рассчитать его необходимую мощность.

В первую очередь нужно понимать баланс тепла в здании. Для этих расчетов можно воспользоваться услугами специалистов, онлайн-калькулятором или самостоятельно с помощью несложной формулы:

R=(k x V x T)/860, в которой:

R — потребляемая мощность помещения (кВт/час); k — средний коэффициент потерь тепла зданием: например, равно 1 — отлично утепленное здание, а 4 — барак из досок; V — суммарный объем всего отапливаемого помещения, в куб.м.; T — максимальный перепад температуры между улицей и внутри помещения.

860 — значение, необходимое для перевода получившихся ккал в кВт.

В случае с геотермальным тепловым насосом типа «вода-вода» нужно еще рассчитать необходимую длину контура, который будет находиться в водоеме. Здесь расчет еще проще.

Известно, что 1 метр коллектора дает примерно 30 Вт. Другими словами 1 кВт мощности насоса требует 22 метра труб. Зная требуемую мощность насоса, мы без труда рассчитаем сколько нам нужно труб для изготовления контура.

Расчет на примере системы вода-вода

Рассчитаем для примера дом со следующими исходными данными:

  • отапливаемая площадь 300 кв.м.;
  • высота потолков 2,8 м;
  • здание хорошо утеплено;
  • минимальная температура зимой на улице -25 градусов;
  • комфортная температура в помещении +22 градуса.

В первую очередь высчитываем отапливаемый объем помещения:
300 кв.м. х 2,8 м = 840 куб.м.

Затем вычисляем значение «Т»: 22 — (-25) = 45 градусов.

Подставляем эти данные в формулу:
R=(1 x 840 x 45) / 860 = 43,9 кВт/час

Мы получили требуемую мощность теплового насоса в 44 кВт/час. Без труда определяем, что для его функционирования нам потребуется коллектор общей длиной не менее 968 метров.

Вас также может заинтересовать статья о том, как сделать печь капельницу на солярке своими руками: //6sotok-dom.com/dom/otoplenie/pech-kapelnitsa-svoimi-rukami.html

Т.о. для хорошо утепленного помещения площадью 300 кв.м. подойдет насос с мощностью не менее 44 кВт. Как и везде, лучше сделать запас по мощности хотя бы в 10%. Следовательно, приобретать лучше агрегат на 48-49 кВт.

Рано или поздно мы все придем к использованию альтернативной энергетики и можно сделать первый шаг уже сегодня. Используя тепловые насосы, вы уменьшите свои затраты на отопление, станете независимым от поставщиков газа или угля, сохраните экологию родной планеты.

С помощью этой статьи сможете рассчитать параметры геотермального оборудования, которые подойдут вашему помещению. Но не забывайте, что лучше всего справятся со своей задачей профессионалы. Да и у вас всегда будет с кого спросить, в случае неправильной работы системы.

Смотрите видео, в котором специалист подробно объясняет принципы расчета мощности теплового насоса для отопления дома:

  • DmitriiG
  • Распечатать

Расчет теплового насоса воздух-вода на отопление и ГВС просто и быстро

Расчет мощности теплового насоса для дома: принцип действия оборудования и конкретные примеры вычислений

Расчет теплового насоса воздух-вода нужно выполнять с умом, чтобы потом не кусать локти. В отличие от грунта и воды, воздух более подвержен колебаниям температуры на протяжении одних суток и целого года.

Из этой публикации вы узнаете, как это правильно сделать, с какими проблемами вы сможете столкнуться. Правильно расчитать мощность теплового насоса можно выполнить самостоятельно, если воспользоваться нашими рекомендациями.

Особенности работы ТН воздух-вода на отопление

Воздух – весьма непостоянная среда. В течение суток его температура может падать на 10-15 градусов, а при резких сменах погоды и более. Многие допускают одну и ту же ошибку – делают расчет мощности теплового насоса для отопления дома на основании средней температуры. А после удивляются, что потребление энергии выше, чем заявил производитель. Поясним на наглядном примере.

Допустим, вам нужно поддерживать в доме температуру +20, а на улице днем -5, а ночью -15 градусов. Как мы видим, днем придется работать с разницей температур 25, а ночью – 35 градусов.

Казалось бы, перепад составляет всего 10 градусов или около 40% и потребление электроэнергии должно вырасти ровно настолько. Но это не так.

Принцип работы воздушного теплового насоса построен так, что его COP (КПД) меняется не по прямой зависимости. И получится, что ночью он будет потреблять не на 40%, а на 45-50% больше электроэнергии.

Из иллюстрации видно, что COP напрямую зависит от температуры наружного воздуха и температуры, до которой нужно нагреть теплоноситель (в нашем случае — воду).

Поэтому при расчете мощности воздушного теплового насоса стоит учитывать не только температуры, но и колебания COP (КПД теплового насоса). Причем в долгосрочной перспективе это немаловажно, ведь в отопительный сезон темное время суток длится до 15 часов.

В чем разница расчетов на отопление и гвс?

Расходы на горячее водоснабжение и отопление дома несколько отличаются. Если вас интересует не отопление, а ГВС, то расчет теплового насоса воздух-вода нужно производить исходя из того, когда используется больше воды. Ведь при отоплении дома вам нужно подогревать теплоноситель постоянно, а горячую воду вы потребляете не всегда.

Обычно пики расхода приходятся на утро и вечер, а в это время суток температура на улице отличается. Если к вечеру воздух прогревается за день, то утром он максимально холодный и успел остыть за ночь. Посчитайте, сколько горячей воды уходит у вас утром и вечером, сопоставьте эти цифры.

Еще один важный момент – температура входящей воды. Она тоже может колебаться в зависимости от погоды, особенно если трубы водопровода проложены неглубоко. Если их глубина залегания больше метра – этот момент можно опустить, колебания будут невелики.

Температура воды в трубах водопровода зависит от его длины и глубины залегания.

Если использовать тепловой насос для отопления дома, его расход мощности на обогрев здания будет больше, чем на горячую воду. Хотя при общей калькуляции для точности расчетов стоит учитывать и его.

Расчет теплового насоса воздух-вода на ГВС

Теперь приступим к прямым расчетам. Для этого вам нужно знать следующее:

  • Температура входящей воды;
  • Расход горячей воды утром и вечером;
  • Среднюю температуру на улице утром и вечером;
  • Коэффициент COP (КПД) теплового насоса.

Средние температуры узнать несложно – на многих сайтах, предлагающих прогноз погоды, можно с большой точностью узнать средние колебания в вашем регионе и даже отдельном городе. COP теплового насоса при разных температурах должен указывать производитель в сопроводительной документации.

Для точности, подсчеты будем делать отдельно, для утреннего и вечернего времени. В идеале расчет теплового насоса воздух-вода стоит делать отдельно для каждого месяца, но никаких принципиальных отличий у нас не будет. Просто придется повторить процесс трижды, подставляя разные значения.

Для подсчета расхода электроэнергии нужны три значения, а именно:

∆T – разница температуры входящей воды и требуемой. Обычно нормальный уровень нагрева горячей воды +45 — +55 градусов.
V – объем расхода воды в литрах.
K – COP (КПД) теплового насоса при средней температуре воздуха на улице.

Формула расчета выглядит следующим образом:

∆T х V / K х 1,16.

Например, нам нужно 200 литров воды подогреть от +5 до +45 градусов, когда COP теплового насоса равен 4. Теперь подставим цифры в формулу и получим результат:

40 х 200 / 4 х 1,16 = 2320.

Таким же образом подсчитайте энергопотребление для другого времени суток с пиковым расходом, просуммируйте цифры и умножьте на количество дней в месяце. Сделайте расчет для каждого месяца и получите количество электроэнергии, нужное для ГВС с помощью теплового насоса.

Расчет теплового насоса воздух-вода для отопления

При обогреве дома подсчеты нужно делать иначе. Здесь не имеет смысла считать расход воды, но большую роль играют теплопотери здания. Для их подсчета можно использовать онлайн-калькулятор, например: //dokadoma.com/calc/teplo или //teplo-info.com/otoplenie/raschet_teplopoter_online.

Как в случае с расчетами на горячую воду, лучше сегментировать данные. Сделайте расчет на темное и светлое время суток, для каждого месяца отопительного сезона отдельно. Полученные данные это то количество тепла, которое должен отдавать тепловой насос.

Далее разделите полученные данные на коэффициент COP для каждого времени суток отдельно. Так вы получите количество электроэнергии, нужное для того, чтобы тепловой насос работал в штатном режиме.

Общий расчет и нюансы

Сложив расход электроэнергии на отопление и горячее водоснабжение, мы получим общие затраты на работу теплового насоса. Но остаются два нюанса, а именно:

  • Производители тепловых насосов часто завышают данные. Например, они не учитывают затраты на работу помпы, которая прокачивает воду в системе отопления. Иногда график зависимости COP не соответствует действительности.
  • В то время когда горячая вода не используется, она находится в баке-накопителе и постепенно остывает. Тепловой насос будет поддерживать ее температуру, на что также уходит электроэнергия.

Поэтому прибавьте к расчетной мощности еще 5-10%.

Вода в таком баке-накопителе остывает медленно, но тепловой насос тратит энергию для ее подогрева.

Как подобрать тепловой насос воздух-вода?

Как мы видим, расчет теплового насоса воздух-вода сильно зависит от COP. Соответственно, чем выше этот коэффициент, тем меньше расходы на отопление и ГВС. Но оборудование с хорошими показателями стоит немало, поэтому лучше поискать золотую середину.

Принцип работы теплового насоса воздух вода таков, что его КПД сильно зависит от температуры воздуха. В некоторых регионах и в разное время года она существенно отличается днем и ночью. Это нужно учитывать.

Когда вы получили цифры по потерям тепла на отопление и горячую воду, просчитайте расход на потребление для разных моделей и производителей тепловых насосов. Сравнив эти расчеты и стоимость оборудования, вы сможете выбрать оптимальный вариант.

Большую роль играет мощность насоса – чем больше разница между его максимальной производительностью и потреблением, тем дольше он прослужит. Нередко у более мощных моделей одной серии коэффициент COP выше, чем у менее производительных.

При выборе поставщика подсчитайте окупаемость оборудования – за какое время расходы на приобретение покроются за счет экономии. Это немаловажный фактор.

Защититесь от форс-мажора

Тепловой насос выгоден и удобен в использовании, но это не панацея. Он не поможет если:

  • Вышел из строя сам тепловой насос;
  • Отключилось электричество;
  • Наступили морозы, не типичные для климата вашего региона.

В таких случаях тепловой насос бесполезен. Вы можете остаться без отопления на долгий срок. Первое время дом будет держать тепло, но со временем будет остывать. На такой случай нужно иметь резервный источник для отопления и подогрева воды.

Ели у вас проведен газ – обязательно установите газовый котел. Если нет – спасет твердотопливный. Котлы могут использоваться в качестве резерва или для догрева воды. Все зависит от типа подключения. В первом случае оно параллельное, во втором – последовательное.

Произвести расчет теплового насоса воздух-вода не так сложно, как кажется. И чем точнее вы это сделаете, тем лучше сможете подобрать подходящую модель. В этом случае нелишне потратить несколько часов своего времени, но быть уверенным в том, что все сделали правильно, ведь тепловой насос – такое оборудование, которое служит не один год.

Не забудьте поделиться публикацией в соцсетях!

Тепловой насос для отопления дома: принцип работы и примеры расчета

Расчет мощности теплового насоса для дома: принцип действия оборудования и конкретные примеры вычислений

Давно и весьма успешно тепловые насосы используются в бытовых и промышленных холодильниках и кондиционерах.

Сегодня эти устройства стали применять и для выполнения функции противоположного характера – обогрева жилища в период холодов.

Давайте же посмотрим, как используются тепловые насосы для отопления частных домов и что нужно знать, чтобы правильно рассчитать все его компоненты.

Тепловой насос. Конструкция обогрева дома

В системе отопления дома тепловой насос (ТН) играет ту же роль, что и котел, то есть является теплогенератором.

Разница состоит только в том, что котел сжигает топливо, а ТН «выкачивает» тепловую энергию из источников, которые, на первый взгляд, совсем ею не богаты.

Грунт и речная вода с температурой 5 – 7 градусов, или даже морозный зимний воздух, температура которого вообще оказалась ниже нуля.

Такие источники называются низкопотенциальными, и хотя с понятием тепла они никак не ассоциируются, ТН умудряется «выжать» из них внушительный объем живительной энергии. К этому следует добавить тепло, выделяемое электродвигателем компрессора ТН: здесь, в отличие от холодильника и кондиционера, оно не пропадает даром.

В остальном система отопления на базе ТН ничем не отличается от обычной: используется теплоноситель – вода или воздух, который нагревается, протекая через теплообменник, а затем разносит тепло по всему дому.

Циркуляцию обеспечивает насос (для водяного отопления) или вентилятор (для воздушного).

Точно также, как и традиционный теплогенератор, ТН можно одновременно подключить к контуру горячего водоснабжения (ГВС) как с накопительной емкостью (бойлером), так и без нее.

Принцип работы тепловых насосов

В любом ТН имеется рабочая среда, именуемая хладагентом. Обычно в этом качестве выступает фреон, реже – аммиак. Само устройство состоит всего из трех компонентов:

  • испаритель;
  • компрессор;
  • конденсатор.

Испаритель и конденсатор – это два резервуара, имеющие вид длинных изогнутых трубок – змеевиков. Конденсатор одним концом присоединяется к выходному патрубку компрессора, а испаритель – ко входному.

Концы змеевиков стыкуются и в месте соединения между ними устанавливается редукционный клапан.

Испаритель контактирует – непосредственно или косвенно – со средой-источником, а конденсатор – с системой отопления или ГВС.

Принцип работы теплового насоса

Работа ТН основана на взаимозависимости объема, давления и температуры газа. Вот что происходит внутри агрегата:

  1. Аммиак, фреон или другой хладагент, двигаясь по испарителю, нагревается от среды-источника, допустим, до температуры +5 градусов.
  2. Пройдя испаритель, газ достигает компрессора, который перекачивает его в конденсатор.
  3. Нагнетаемый компрессором хладагент удерживается в конденсаторе редукционным клапаном, поэтому его давление здесь выше, чем в испарителе. Как известно, с ростом давления температура любого газа увеличивается. Именно это происходит с хладагентом – он разогревается до 60 – 70 градусов. Поскольку конденсатор омывается циркулирующим в системе отопления теплоносителем, последний также нагревается.
  4. Через редукционный клапан хладагент небольшими порциями сбрасывается в испаритель, где его давление снова падает. Газ расширяется и остывает, а поскольку часть внутренней энергии была потеряна им в результате теплообмена на предыдущем этапе, его температура опускается ниже изначальных +5 градусов. Следуя по испарителю, он снова нагревается, далее закачивается в конденсатор компрессором – и так по кругу. По-научному этот процесс называется циклом Карно.

особенность ТН состоит в том, что тепловая энергия берется из окружающей среды буквально даром. Правда, для ее добычи необходимо потратить некоторое количество электроэнергии (для компрессора и циркуляционного насоса/вентилятора).

Но ТН все-равно остается очень выгодным: за каждый потраченный кВт*ч электроэнергии удается получить от 3 до 5 кВт*ч тепла.

Виды конструкций тепловых насосов

Тип ТН принято обозначать словосочетанием, указывающим на среду-источник и теплоноситель системы отопления.

Существуют следующие разновидности:

  • ТН «воздух – воздух»;
  • ТН «воздух – вода»;
  • ТН «грунт – вода»;
  • ТН «вода – вода».

Самый первый вариант – это обычная сплит-система, работающая в режиме обогрева. Испаритель монтируется на улице, а внутри дома устанавливается блок с конденсатором. Последний обдувается вентилятором, благодаря чему в помещение подается теплая воздушная масса.

Если такую систему оснастить специальным теплообменником с патрубками, получится ТН типа «воздух – вода». Он подключается к водяной системе отопления.

Испаритель ТН типа «воздух – воздух» или «воздух – вода» можно разместить не на улице, а в канале вытяжной вентиляции (она должна быть принудительной). В этом случае эффективность ТН будет увеличена в несколько раз.

Теплонасосы типа «вода – вода» и «грунт – вода» для отбора тепла используют так называемый наружный теплообменник или, как его еще называют, коллектор.

Принципиальная схема работы теплового насоса

Это длинная закольцованная труба, как правило, пластиковая, по которой циркулирует жидкая среда, омывающая испаритель. Обе разновидности ТН представляют собой одно и то же устройство: в одном случае коллектор погружается на дно поверхностного водоема, а во втором – в грунт. Конденсатор такого ТН расположен в теплообменнике, подключаемом к системе водяного отопления.

Подключение ТН по схеме «вода – вода» является гораздо менее трудоемким, чем «грунт – вода», поскольку отпадает необходимость в проведении земляных работ. На дно водоема труба укладывается в виде спирали. Разумеется, для данной схемы подойдет только такой водоем, который зимой не промерзает до дна.

Работа теплового насоса при работе по схеме «грунт-вода»

Укладку коллектора в грунт можно произвести тремя способами.

Горизонтальный вариант

Трубы укладываются в траншеи «змейкой» на глубину, превышающую глубину промерзания грунта (в среднем – от 1 до 1,5 м).

Для такого коллектора потребуется участок земли достаточно большой площади, но зато его может построить любой домовладелец – никаких навыков, кроме умения работать лопатой, не понадобится.

Следует, правда, учесть, что сооружение теплообменника ручным способом – довольно трудоемкий процесс.

Вертикальный вариант

Трубы коллектора в виде петель, имеющих форму литеры «U», погружаются в скважины глубиной от 20 до 100 м. При необходимости можно построить несколько таких скважин. После установки труб скважины заливают цементным раствором.

Достоинство вертикального коллектора состоит в том, что для его строительства нужен совсем небольшой участок. Однако, пробурить скважины глубиной более 20 м самостоятельно нет никакой возможности – придется нанимать бригаду бурильщиков.

Комбинированный вариант

Этот коллектор можно считать разновидностью горизонтального, но для его строительства потребуется гораздо меньше места.

На участке выкапывается круглый колодец глубиной от 2-х м.

Трубы теплообменника укладываются спиралью, так что контур представляет собой как бы вертикально установленную пружину.

По завершении монтажных работ колодец засыпают. Как и в случае с горизонтальным теплообменником, весь необходимый объем работ можно произвести своими руками.

Коллектор заполняется антифризом – тосолом или раствором этиленгликоля. Для обеспечения его циркуляции в контур врезается специальный насос. Вобрав в себя тепло грунта, антифриз поступает к испарителю, где происходит теплообмен между ним и хладагентом.

Следует учесть, что неограниченный отбор тепла из грунта, особенно при вертикальном расположении коллектора, может привести к нежелательным последствиям для геологии и экологии участка. Поэтому в летний период ТН типа «грунт – вода» весьма желательно эксплуатировать в реверсивном режиме – кондиционирование.

Пример расчета теплового насоса

Подберем ТН для системы отопления одноэтажного дома общей площадью 70 кв.

м со стандартной высотой потолка (2,5 м), рациональной архитектурой и теплоизоляцией ограждающих конструкций, соответствующей требованиям современных строительных норм. На обогрев 1-го кв.

м такого объекта по общепринятым нормам приходится тратить 100 Вт тепла. Таким образом, для отопления всего дома понадобится:

Q = 70 х 100 = 7000 Вт = 7 кВт тепловой энергии.

Выбираем тепловой насос марки «ТеплоДаром» (модель L-024-WLC) с тепловой мощностью W = 7,7 кВт. Компрессор агрегата потребляет N = 2,5 кВт электроэнергии.

Расчет коллектора

Грунт на отведенном под строительство коллектора участке – глинистый, уровень грунтовых вод высокий (принимаем теплотворную способность p = 35 Вт/м).

Мощность коллектора определяем по формуле:

Qk = W – N = 7,7 – 2,5 = 5,2 кВт.

Определяем длину трубы коллектора:

L = 5200 / 35 = 148.5 м (приблизительно).

Исходя из того факта, что укладывать контур длиной более 100 м нерационально из-за чрезмерно высокого гидравлического сопротивления, принимаем следующее: коллектор теплового насоса будет состоять из двух контуров – длиной 100 м и 50 м.

Площадь участка, который необходимо будет отвести под коллектор, определим по формуле:

S = L x A,

Где А – шаг между соседними участками контура. Принимаем: А = 0,8 м.

Тогда S = 150 x 0.8 = 120 кв. м.

Расчет вертикального коллектора

На глубине свыше 15 м температура грунта стабильно держится на отметке +10 градусов круглый год. Поэтому эффективность вертикального коллектора является более высокой – в среднем с метрового участка удается снимать до 50 Вт тепла. Для расчета длины теплообменника также необходимо учитывать тип среды. Так, с 1-го метра трубы удается получить такую тепловую мощность:

  • 20 Вт – при погружении в осадочный грунт (сухой);
  • 50 Вт – в каменистом либо влажном осадочном грунте;
  • 70 Вт – твердые породы (камень);
  • 80 Вт – подземные воды.

Применение вертикального зонда для теплового насоса

При строительстве скважин следует соблюдать условие: расстояние между ними должно составлять не менее 5 м.

Для работы теплового насоса из вышеприведенного примера понадобится коллектор длиной L = 5200 / 50 = 140 м.

Следовательно, для обустройства коллектора потребуется пробурить две скважины глубиной 70 м. В каждой из них нужно будет установить по две U-образные петли, для чего необходимо будет закупить 4х140 = 560 м труб.

Виды тепловых насосов для отопления дома

Расчет мощности теплового насоса для дома: принцип действия оборудования и конкретные примеры вычислений

Тип ТН принято обозначать словосочетанием, указывающим на среду-источник и теплоноситель системы отопления.

Существуют следующие разновидности:

  • ТН «воздух – воздух»;
  • ТН «воздух – вода»;
  • ТН «грунт – вода»;
  • ТН «вода – вода».

Самый первый вариант – это обычная сплит-система, работающая в режиме обогрева. Испаритель монтируется на улице, а внутри дома устанавливается блок с конденсатором. Последний обдувается вентилятором, благодаря чему в помещение подается теплая воздушная масса.

Если такую систему оснастить специальным теплообменником с патрубками, получится ТН типа «воздух – вода». Он подключается к водяной системе отопления.

Испаритель ТН типа «воздух – воздух» или «воздух – вода» можно разместить не на улице, а в канале вытяжной вентиляции (она должна быть принудительной). В этом случае эффективность ТН будет увеличена в несколько раз.

Теплонасосы типа «вода – вода» и «грунт – вода» для отбора тепла используют так называемый наружный теплообменник или, как его еще называют, коллектор.

Принципиальная схема работы теплового насоса

Это длинная закольцованная труба, как правило, пластиковая, по которой циркулирует жидкая среда, омывающая испаритель. Обе разновидности ТН представляют собой одно и то же устройство: в одном случае коллектор погружается на дно поверхностного водоема, а во втором – в грунт. Конденсатор такого ТН расположен в теплообменнике, подключаемом к системе водяного отопления.

Подключение ТН по схеме «вода – вода» является гораздо менее трудоемким, чем «грунт – вода», поскольку отпадает необходимость в проведении земляных работ. На дно водоема труба укладывается в виде спирали. Разумеется, для данной схемы подойдет только такой водоем, который зимой не промерзает до дна.

Настало время предметно изучать зарубежный опыт

О тепловых насосах, способных отобрать тепло окружающей среды для отопления зданий, теперь уже знают почти все, и, если еще недавно потенциальный заказчик, как правило, задавал недоуменный вопрос «как это возможно?», то теперь все чаще звучит вопрос «как это правильно сделать?».

Ответить на этот вопрос непросто.

В поисках ответа на многочисленные вопросы, которые неизбежно возникают при попытке проектировать системы отопления с тепловыми насосами, целесообразно обратиться к опыту специалистов тех стран, где тепловые насосы на грунтовых теплообменниках применяются уже давно.

Посещение* американской выставки AHR ЕХРО-2008, которое было предпринято, главным образом, с целью получения информации о методах инженерных расчетов грунтовых теплообменников, прямых результатов в этом направлении не принесло, но на выставочном стенде ASHRAE продавалась книга , некоторые положения которой послужили основой для этой публикации.

Следует сразу сказать, что перенос американской методики на отечественную почву – дело непростое. У американцев все не так, как принято в Европе. Только время они измеряют в тех же единицах, что и мы.

Все остальные единицы измерения – чисто американские, а точнее – британские.

Особенно не повезло американцам с тепловым потоком, который может измеряться как в британских тепловых единицах, отнесенных к единице времени, так и в тоннах охлаждения, которые придуманы, вероятно, в Америке.

проблема, однако, состояла не в техническом неудобстве пересчета принятых в США единиц измерения, к которым со временем можно и привыкнуть, а в отсутствии в упомянутой книге четкой методической основы построения алгоритма вычислений. Рутинным и широко известным расчетным приемам там уделяется слишком много места, в то время как некоторые важные положения остаются вовсе нераскрытыми.

В частности, такими физически связанными исходными данными для расчета вертикальных грунтовых теплообменников, как температура циркулирующей в теплообменнике жидкости и коэффициент преобразования теплового насоса, нельзя задаваться произвольно, и, прежде чем приступать к вычислениям, связанным с нестационарным теплообменом в грунте, необходимо определить зависимости, связывающие эти параметры.

Критерием эффективности теплового насоса служит коэффициент преобразования ?, величина которого определяется отношением его тепловой мощности к мощности электропривода компрессора.

Эта величина является функцией температур кипения в испарителе tu и конденсации tk, а применительно к тепловым насосам «вода-вода» можно говорить о температурах жидкости на выходе из испарителя t2И и на выходе из конденсатора t2K:

? = ?(t2И,t2K).         (1)

Анализ каталожных характеристик серийных холодильных машин и тепловых насосов «вода-вода» позволил отобразить эту функцию в виде диаграммы (рис. 1).

При помощи диаграммы нетрудно определиться с параметрами теплового насоса на самых начальных стадиях проектирования.

Очевидно, например, что, если система отопления, присоединенная к тепловому насосу, рассчитана на подачу теплоносителя с температурой в подающем трубопроводе 50°C, то максимально возможный коэффициент преобразования теплового насоса будет около 3,5.

При этом температура гликоля на выходе из испарителя не должна быть ниже +3°С, а это означает, что потребуется дорогой грунтовый теплообменник.

В то же время, если дом обогревается посредством теплого пола, из конденсатора теплового насоса будет поступать в систему отопления теплоноситель с температурой 35°С. В этом случае тепловой насос сможет работать более эффективно, например, с коэффициентом преобразования 4,3, если температура охлажденного в испарителе гликоля будет около –2°С.

Пользуясь электронными таблицами Excel, можно выразить функцию (1) в виде уравнения:

? = 0,1729 • (41,5 + t2И – 0,015t2И • t2K – 0,437 • t2K      (2)

Если при желаемом коэффициенте преобразования и заданном значении температуры теплоносителя в системе отопления, работающей от теплового насоса, нужно определить температуру охлажденной в испарителе жидкости, то уравнение (2) можно представить в виде:

         (3)

Выбрать температуру теплоносителя в системе отопления при заданных величинах коэффициента преобразования теплового насоса и температуры жидкости на выходе из испарителя можно по формуле:

    (4)

В формулах (2)…(4) температуры выражены в градусах Цельсия.

Определив эти зависимости, можно теперь перейти непосредственно к американскому опыту.

Методика расчета тепловых насосов

Безусловно, процесс выбора и расчет теплового насоса является весьма сложной в техническом отношении операцией и зависит от индивидуальных особенностей объекта, но ориентировочно он может быть сведен к следующим этапам:

Определяются теплопотери через ограждающие конструкции здания (стены, перекрытия, окна, двери). Сделать это можно, применив следующее соотношение:

Qок = S*( tвн – tнар)* (1 + Σ β ) *n / Rт(Вт)где

tнар – наружная температура воздуха (°С);

tвн – внутренняя температура воздуха (°С);

S – суммарная площадь всех ограждающих конструкций (м2);

n – коэффициент, указывающийвлияние окружающей среды на характеристики объекта. Для помещений, напрямую контактирующих через перекрытия с наружной средой n=1; для объектов, имеющих чердачные перекрытия n=0,9; если же объект размещен над подвальным помещением n = 0,75;

β – коэффициент добавочных теплопотерь, который зависит от типа строения и его географического расположенияβ может варьироваться от 0,05 до 0,27;

Rт – теплосопротивление, определяется по следующему выражению:

Rт = 1/ αвнутр + Σ ( δі / λі ) + 1/ αнар (м2*°С / Вт), где:

δі / λі – расчетный показатель теплопроводности применяемых при строительстве материалов.

αнар– коэффициент теплового рассеивания наружных поверхностей ограждающих конструкций(Вт/ м2*оС);

αвнутр– коэффициент теплового поглощения внутренних поверхностей ограждающих конструкций(Вт/ м2*оС);

— Рассчитываются суммарные теплопотери сооружения по формуле:

Qт.пот = Qок + Qи – Qбп , где:

Qи — затраты энергии на подогрев воздуха поступающего к помещению через естественные неплотности;

Qбп -выделения тепла за счет функционирования бытовых приборов и деятельности людей.

2. На основании полученных данных рассчитывается годичное потребление тепловой энергии для каждого индивидуального объекта:

Qгод = 24*0.63*Qт. пот.*(( d*( tвн — tнар.ср.)/ ( tвн — tнар.))(кВт/час за год.) где:

tвн – рекомендуемая температура воздушной среды внутри помещения;

tнар – наружная температура воздуха;

tнар.ср – среднеарифметическое значение температуры наружного воздуха за весь отопительный сезон;

d – число дней отопительного периода.

3. Для полного анализа потребуется рассчитать и уровень тепловой мощности необходимой для разогрева воды:

Qгв = V * 17(кВт/час за год.) где:

V –объем каждодневного нагрева воды до 50 °С.

Тогда суммарный расход тепловой энергии определится по формуле:

Q = Qгв + Qгод (кВт/час за год.)

Принимая во внимание полученные данные, подобрать наиболее подходящий тепловой насос для отопления и горячего водоснабжения не составит большого труда. Причем расчетная мощность определится как. Qтн=1,1*Q, где:

Qтн=1,1*Q, где:

1,1 – корректирующий коэффициент, указывающий возможность увеличения нагрузки на тепловой насос в период возникновения критических температур.

Выполнив расчет тепловых насосов можно подобрать наиболее подходящий тепловой насос, способный обеспечить требуемые параметры микроклимата в помещениях с любыми техническими характеристиками. А учитывая возможность интеграции указанной системы с климатической установкой теплый пол можно отметить, не только ее функциональность, но и высокую эстетическую стоимость. 

Читать еще:

О том как правильно рассчитать кол-во и глубину скважин для ТН можно узнать из следующего видео:

О цветах и даче
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: